MATH2060 TUTO4

16. Let $I \subseteq \mathbb{R}$ be an open interval, let $f : I \to \mathbb{R}$ be differentiable on *I*, and suppose f''(a) exists at $a \in I$. Show that

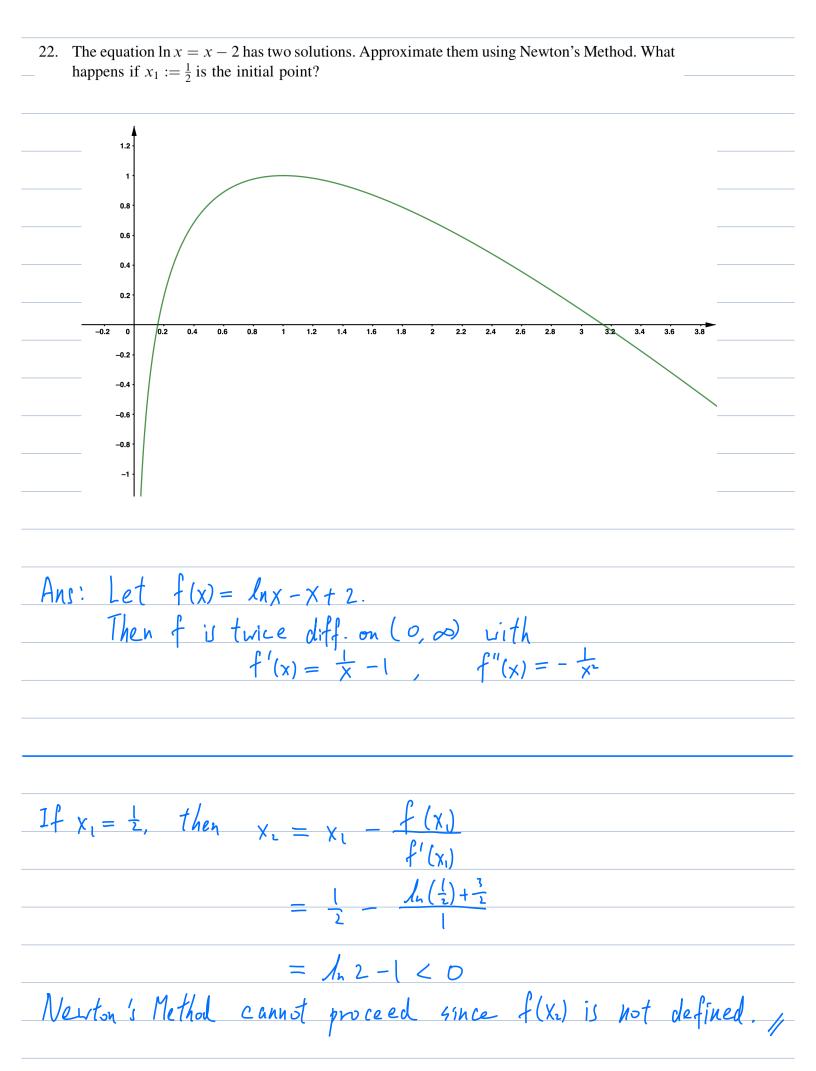
$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}.$$

Give an example where this limit exists, but the function does not have a second derivative at *a*.

Ans :
$$f$$
 diff: on $I \Rightarrow f$ ets on I
So $F(h) = f(a+h) - 2f(a) + f(a+h)$ is diff. in a hild of D
and $\lim_{h \to 0} F(h) = 0$
 $OTOH, G(h) = h^{2}$ is clearly diff. \forall h $\in \mathbb{R}$
and $G(h) \neq D$ \forall $h \neq D$, $\lim_{h \to 0} G(h) = D$
 $R_{y} L'H_{opital's Rule}$
 $\lim_{h \to 0} \frac{F(h)}{G(h)} = \lim_{h \to 0} \frac{F'(h)}{G'(h)}$ (provided RHS exists)
 $\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$
 $= \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$
 $= \frac{1}{2} \lim_{h \to 0} \left[\frac{f'(a+h) - f(a)}{h} + \frac{f(a-h) - f(a)}{-h} \right]$
 $= \frac{1}{2} (f'(a) + f''(a)) = f''(a)$
Take $A = D$, $f(x) = \left\{ x^{2}, x \neq D \\ -x^{2}, x \in D \right\}$

However F"() DNE Since $\frac{f'(x)-f(x)}{x} =$ 2 while lin f(x)-f(0) =-2 ling X-10t

$$\begin{array}{c|c} \hline Ihm \ b.4.7 & (Necton's \ Method) \\ \hline Let & f: [a,b] \rightarrow \mathbb{R} \quad twice \ differentiable & (a < b) \\ & f(a)f(b) < 0 \\ \hline & f(a)f(b) \\ \hline & f(a)f(b) < 0 \\ \hline & f(a)f(b) \\$$



22. The equation $\ln x = x - 2$ has two solutions. Approximate them using Newton's Method. What happens if $x_1 := \frac{1}{2}$ is the initial point?

Ans: Since f(0.1)≈-0.4026 and f(0.2)≈0.1906>0 the Intermediate Value Than implies that I r C I = [0.1, 0.2] s.t. f(r)=0. Let $x_1 = 0.2$, $x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$ V n 71. Then $X_{1} \approx 0.152359$, $X_{3} \approx 0.158594$, $X_{4} \approx 0.158594$, $X_5 \simeq 0.158594$, $X_b \approx 0.158594$, ... Does Xn → r? How accurate is it ? Note $m_{1} = \min_{x \in I} |f'(x)| = \frac{1}{0.2} - 1 = 4$, $K := \frac{\Gamma I}{2m} = \frac{2.5}{2}$ $M_{2} = \max_{x \in I} |f''(x)| = \frac{1}{0.1^{2}} = 100$ K := 0.08 $let \quad I^* = [r - f, r + f] = [2r - 0.2, 0.2]$ $(:: r \in (0.15, 0.2) \text{ as } f(0.15) \approx -0.0471 < 0)$ Then $I^* \subseteq I$ and 0<8< 0.05 < 1/K. By Newton's method (and its proof), 1) $X_n \in I^* \quad \forall n \quad (:: X_l \in I^*)$ 2) $\chi_h \longrightarrow \gamma$ $|X_{n+1}-r| \leq K |X_n-r|^2 \quad \forall n \in \mathbb{N}.$ ζ) In particular, en:= K(Xn-V) satisfies $\frac{|e_{n+1}| \leq |e_n|^2 \leq \dots \leq |e_1|^{2^n}}{\int_0 |e_6| \leq |e_1|^{2^5}}$ $= |x_{L} - r| \leq 0.08 (0.05/0.08)^{32} \approx 0.24 \times 10^{7} < 0.5 \times 10^{6}$ Thus $r \approx x_{c} \approx 0.158594$, cor. to $6 d_{-p}$.

22. The equation $\ln x = x - 2$ has two solutions. Approximate them using Newton's Method. What happens if $x_1 := \frac{1}{2}$ is the initial point?

Ans: Since
$$f(3) = ln 3 - 1 > 0$$
 (= 0.0986)
 $f(4) = ln 4 - 2 < 0$ (>-0.6137),
the Intermediate Velue Thin implies that $\exists s \in I' = I3, 4] s.t. f(0) = 0$
Let $\chi_1 = 3$, $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f'(\chi_n)}$ $\forall n \ge 1$.
Then $\chi_1 \approx 3.141918$, $\chi_3 \approx 3.146193$, $\chi_4 \approx 3.146193$, ...
Again, we can show that $\chi_n \rightarrow s$ and estimate the error.
Note $m_1 = \min_{x \in X} |f'(\chi_1|) = \frac{1}{4} - 1| = \frac{3}{4}$ $\Rightarrow K := \frac{M}{2m} = \frac{2}{3}$
 $M := \max_{x \in X} |f'(\chi_1|) = \frac{1}{3^2} = \frac{1}{9}$ $\chi_K = 1.5$
Let $I^{**} = [s - f, s + 8] = [3, 2s - 3]$.
Then $I^{**} \subseteq I'$ ($\because s \in (3, 3s)$ as $f(3.5) \approx -0.24 < 0$)
and $0 < 6 \le 0.5 < \sqrt{K}$.
By Newton's method (and its proof).
 $1)$ $\chi_n \in I^{**} \forall n$ ($\because \chi_1 \in I^{**}$)
 $2)$ $\chi_n \rightarrow s$
 $3)$ $|\chi_{n+1} - s| \le K |\chi_n - s|^2$ $\forall n \in N$.

Pef 1) A fen f: [a,b] → IR is raid to be Rieman integrable on [a,b]
if ∃ L eTR s.t.
$$\forall C > 0$$
, $\exists S_{C} > 0$ s.t.
 $\forall taggad partition \dot{P} of [a,b] with $||\dot{P}|| \leq S_{C}$
 $||S(f; P) - L| < C$
For $\dot{P} = \{[X_{i-1}, x_{i}], t\}_{i=1}^{i}$, $||P|| = \max \{|X_{i} - X_{i-1}| : i=1, ..., n\}$
 $S(f; P) = \int_{i=1}^{i} f(t)(x_{i} - x_{i-1})$
2) R[a,b] := set of all Riemann integrable forms on [a,b]
3) The number L is untignely determined and is denoted by
 $\int_{a}^{b} f$ or $\int_{a}^{b} f(s) ds$$

3. Show that $f : [a, b] \to \mathbb{R}$ is Riemann integrable on [a, b] if and only if there exists $L \in \mathbb{R}$ such that for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that if $\dot{\mathcal{P}}$ is any tagged partition with norm $|\dot{\mathcal{P}}|| \leq \delta_{\varepsilon}$, then $|S(f; \dot{\mathcal{P}}) - L| \leq \varepsilon$.

Pf:"=>" Suppose f & R[a,b]. Urite L = Jaf. Let 2>0. Ky def.] SE>0 1.t. V tagged partition & of [a,b] with ||P|| < &a, $|S(f;\dot{P}) - L| < \varepsilon$ Take $f_{2} := f_{2}/2$ (>0). Then \forall tagged partition $\dot{\mathcal{B}}$ of [a,b] with $\|\tilde{\mathcal{P}}\| \leq S_r'$, we have 11P/ < Se and here $|S(f; \dot{P}) - L| < \varepsilon$ \Rightarrow $|S(f; \dot{p}) - L| \leq 2$ lo +1 holds.

"=" Juppose (*) holds. Then ILGR s.t. VC70, ISE 70 s.t. V tagged partition P of [a,b] with ||p|| < &c. $|S(f;\dot{P}) - L| \leq \frac{2}{2}$ Jo, ∀ 2>0, ∃ Seh>0 s.t. \forall tagged partition \dot{P} of [a,b] with $\|\dot{P}\| < S_{1/2}$ $|S(f;\dot{P}) - L| \leq \frac{\varepsilon}{2} < \varepsilon$. Thus f G R[a,b]

- 5. Let $\dot{\mathcal{P}} := \{(I_i, t_i)\}_{i=1}^n$ be a tagged partition of [a, b] and let $c_1 < c_2$.
 - (a) If *u* belongs to a subinterval I_i whose tag satisfies $c_1 \le t_i \le c_2$, show that $c_1 ||\dot{\mathcal{P}}|| \le u \le c_2 + ||\dot{\mathcal{P}}||$.
 - (b) If $v \in [a, b]$ and satisfies $c_1 + ||\dot{\mathcal{P}}|| \le v \le c_2 ||\dot{\mathcal{P}}||$, then the tag t_i of any subinterval I_i that contains v satisfies $t_i \in [c_1, c_2]$.

Ans: a) Write
$$I_i = [X_{i-1}, x_i]$$

Then $x_{i-1} \in U$, $t_i \in x_i$
 $\int_{0}^{\infty} |U - t_i| \in x_i - x_{i-1} \in ||\dot{P}||$
 $\Rightarrow t_i - ||\dot{P}|| \leq U \leq t_i + ||\dot{P}||$
 $\Rightarrow c_i - ||\dot{P}|| \leq U \leq c_2 + ||\dot{P}||$
 b Since $P = |I_i|_{i-1}^{n}$ is a partition of $[a,b]$,
 $\exists i \in S_1, ..., n^3$ s.t. $v \in I_i$
Replace the tag of I_i in \dot{P} by v to get a new tagged partition \dot{Q} .
Then $||\dot{Q}|| = ||\dot{P}||$.
Now, $t_i \in I_i$ whose tag satisfies $c_i + ||\dot{P}|| \leq v \leq c_2 - ||\dot{P}||$.
 $B_{V}(a)$,
 $(c_i + ||\dot{P}||) - ||\dot{Q}|| \leq t_i \leq (c_2 - ||\dot{P}||) + ||\dot{Q}||$
 $c_i \leq t_i \leq c_2$
i.e. $t_i \in [c_i, c_i]$